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ABSTRACT

Intuitively, the security of a steganographic communication between two principals lies in the inability of an eaves-
dropper to distinguish cover-objects from stego-objects, that is objects which contain secret messages. A system
should be already considered insecure, if an eavesdropper can suspect the presence of secret communication. Several
definitions of steganographic security were proposed in the literature. However, they all consider only “perfectly
secure” steganographic systems, where even a computationally unbounded observer cannot detect the presence of
a secret message exchange. Second, it might be difficult to construct secure schemes usable in practice following
these definitions. Third, they all require the knowledge of the probability distribution of “normal” covers; although
it might be possible in certain cases to compute this probability, it will in general be infeasible to obtain.

In this paper, we propose a novel approach for defining security in steganographic systems. This definition relies
on a probabilistic game between the attacker and a judge. Given the ability to observe the normal communication
process and the steganographic system, the attacker has to decide whether a specific object (given to him by a judge)
is in fact a plain cover or a stego-object. We discuss the applicability of this new definition and pose the open
problem of constructing provably secure steganographic systems.
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1. INTRODUCTION

Simmons® introduced a classic scenario for invisible communication, the prisoners problem. Suppose two fictional
characters named Alice and Bob are arrested for some crime and put in two different cells. In order to develop
an escape plan, they have to communicate with each other. Unfortunately, all communication is arbitrated by a
warden, named Wendy. If she notices any suspicious communication, she will suppress the exchange of messages
at all. Steganographic systems allow to hide secret messages in un-suspicious objects, called covers. The aim is to
exchange the secret message without raising suspicion of the warden.

In this paper, we consider only secret-key steganographic systems, i.e. systems in which both communication
partners share one single (symmetric) stego-key, which will be used both in the embedding and extraction processes.
The steganographic communication can be outlined as follows (see Figure 1). Alice chooses randomly a cover ¢ and
hides her secret message m in the cover by using the secret key k. The result of this operation is a stego-object s
that is transmitted to Bob. He uses again the secret key k to extract the message m out of s.

Intuitively, the security of the system depends on the inability of a warden to distinguish covers (containing no
valid secret information) from stego-objects. A system should already be called insecure if a warden can suspect
the presence of secret communication. Thus, an eavesdropper is faced to solve what one might call steganographic
decision problem: given any cover or stego-object, he must be able to guess (better than random) whether a secret
message is actually contained in the object or not. For this purpose, he can compare his object with “common”
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Figure 1. Schematic description of a steganographic channel: Alice randomly chooses a cover ¢ and embeds the
message m in c using a key k, creating the stego-object s which she passes on to Bob. Bob reconstructs m with the
key k he shares with Alice.

objects Alice and Bob usually transmit during their communication. Based on a “history” of recently transmitted
objects, an eavesdropper can evaluate and improve his decision strategy.

This paper surveys possible security definitions for steganographic systems. Instead of previous works, which
suggested information-theoretic definitions, we propose to use a model that takes into account the limited compu-
tational power of the warden. Our definition of security is similar to security definitions in cryptography (so-called
indistinguishability tests), which do not require a precise model of the communication channel; however, if such
information is available, it can be incorporated in the decision process.

2. INFORMATION-THEORETIC SECURITY DEFINITIONS

Previous models for steganographic channels were mostly information-theoretic approaches. For example, Z5llner”
proposed an information theoretic definition of steganographic security, in which the sets of messages M, covers
C and keys K are seen as random variables. The output of the embedding process is again a random variable
X. A steganographic system is secure in their model if the mutual information I(M;X A C) equals zero, i.e. if
M is independent from X and C. In other words, knowledge of both random variables X and C' does not reveal
any information about M. As this definition is very similar to Shannon’s definition of unconditional security of
cryptographic systems, we may call any method satisfying this definition “unconditionally secure steganographic
system”.

There is a subtle issue in the definition of steganographic security. Requiring that the eavesdropper cannot get
information about the hidden message implies that there is a hidden message. This is closer to cryptography than it
is to steganography, where one focusses on the existence of the message. We believe that many previous definitions
did not solve this problem satisfactory.

Another approach® uses the relative entropy between X and C as a measure for security; a stego-system is e-
secure under this definition, if D(C]|X) < e. We speak of a perfect steganographic system, if € = 0. Mittelholzer?
proposed an information-theoretic approach that allows to treat watermarking schemes and steganographic methods
in a unified manner. Ettinger? proposed a game theoretic definition, which again needs knowledge of the distribution
of covers in use.

However, it was first noted by Moskowitz et al.* that these models might not be appropriate to define security in
steganographic systems formally. Their main argument goes as follows: “In steganography, the discovery of hidden
information is not modeled in a continuous manner. We must readdress our old paradigms for secure systems to deal
with discontinuities. Standard information theoretic models do not deal with jumps.”



We agree with this proposal; in our opinion, information-theoretical models have the following main drawbacks:

e As in cryptography, it might not be easy to construct unconditionally secure steganographic systems (recall
that in cryptography all known “perfect” systems, as the Vernam scheme, are indeed not practical). It turned
out that most perfectly-secure steganographic systems were just some variant of the Vernam scheme under the
previous security definitions.

e The probability distribution of C' is not known in practice; although, for instance, some approximative models
might be available for the set of all “meaningful” gray-scale images, it might be infeasible to compute an exact
distribution. The problem is even more complicated by the fact that an attacker must find a model for covers
that are “usually” sent between two principals (it might not be sufficient to work with a “general” model of
e.g. grayscale images).

e If one works with an approximated probability distribution for covers, it might be possible that the modifications
applied through the steganographic system are in fact smaller than the approximation error. In this case, the
approximated distribution is useless in the decision process.

e [t is reasonable to assume that an eavesdropper has only access to a computing device with limited computing
power. As in cryptography, one might be satisfied if a steganographic system passes all probabilistic polynomial
tests (assuming some standard model of computation) for solving the steganographic decision problem.

In the light of these severe problems, we propose to model steganographic security as a probabilistic game between
the attacker and a judge. Given the ability to observe “normal” communications and to explore the steganographic
system in use, the attacker has to decide whether a certain object (which is given to him by a judge) is in fact a
plain cover or a stego-object.

3. CONDITIONAL SECURITY OF STEGANOGRAPHIC SYSTEMS

Let C be the set of possible covers (the only requirement is that there is a probabilistic polynomial-time algorithm
that produces elements of C); for any ¢ € C' we denote with ||c|| its length in bits. For the sake of simplicity, we
assume that secret messages exchanged in the stego system are encoded as strings of zeroes and ones. Furthermore,
denote with M the set of all possible messages; normally we let M = {0, 1}*, however more complicated message
sets can be considered as well (as long as there is still a probabilistic polynomial-time algorithm that samples the set

Formally, a (symmetric) steganographic system can be defined by a triple (G, E, D) of probabilistic polynomial
time algorithms. Algorithm G models the key generation process and outputs, on input 1" (a string consisting of n
ones), a random key k € {0,1}", which will serve as a stego key. Note that the set of keys can be restricted to a
subset of {0,1}". By following Kerckhoffs’ principle, the security of a stego system should lie entirely in the stego
keys (the longer the keys, the more difficult the detection of steganographic communication). Therefore, the length
n of the stego key will be referred to as “security parameter”.

Algorithm E represents the embedding process and produces on input ¢ € C';, m € M and k (in the range of G),
a stego object s € C. Finally, algorithm D outputs, on input s and k, a string m’ € {0,1}*, in case the algorithm
succeeds. If the stego object s actually contained a secret message m, then m’ = m. An eavesdropper trying to
detect steganographic communication is faced to solve the steganographic decision problem:

DEFINITION 3.1 (STEGANOGRAPHIC DECISION PROBLEM). Given s € C, determine if there exists a k € {0,1}*
in the range of G and a message m € M such that D(s, k) = m.

We can immediately draw an important consequence. A stego system that simply changes the least significant
bits of pixels in an arbitrary image cannot be secure (i.e. it is always possible to answer the steganographic decision
problem), as long as the set of messages is not structurally restricted, i.e. if M = {0,1}". Let us assume that the
stego system operates in the following manner. On input n, G produces a permutation o on n elements; E scrambles
the message bits according to permutation o and embeds the n message bits in n fixed bits of a cover. D reverses the
process, i.e. it extracts n bits from well-known locations of a stego object and permutes the message bits according
to 0! in order to reconstruct the secret message. Now, for any cover ¢ and for every permutation ¢’ there exists
some message m that seems to be embedded in ¢ (simply run D on ¢’ and ¢ to obtain m); normally, the obtained



message will be completely random and non-sensical, but it is a valid message if the set of messages is not restricted.
Thus, the answer to the steganographic decision problem is always “yes” in this system.

The problem stems from the intuitive definition of “security” that was adopted in many previous papers. When
can we say that a warden “suspects” the presence of steganographic communication? Is this the case if he finds a
totally random message that was allegedly exchanged by two communication partners (even if the “message” was
probably created by accident) or must he able to find some “meaning” in the exchanged bits? Even worse, even if he
has some suspicion that a secret message exchange is going on, this does not mean that he can prove his suspicion to
a third person. We adopt a purely syntactical strategy, i.e. secret messages are constrained to have a specific form
(which in turn implies that an attacker can actually prove his suspicion to a third person).

We model steganographic security as an interactive game between an eavesdropper and a judge. The eavesdropper
can “observe” normal communication on a channel and get information about the stego system in use by retrieving
stego-objects containing messages chosen by him. For this purpose, he is equipped with two oracles. One oracle
repeatedly generates covers, whereas the second oracle issues the eavesdropper, on input m € M and ¢ € C, the
corresponding stego-object containing m (the oracle acts like a black-box implementation of the stego embedding
process for a fixed key, even if the key is unknown to the attacker). Whereas the first oracle simulates objects sent
between two communication partners, the second oracle can be used by the eavesdropper to evaluate the internal
structure of the steganographic algorithm. Note that both oracles are probabilistic; if the first oracle is queried
several times for a cover, it will almost certainly return different objects.

The first oracle is called “steganographic oracle” and can be modeled by an infinite sequence of covers ¢;; our
security definitions will be given in terms of sets of steganographic oracles, thus avoiding the knowledge of a “true”
probability distribution for covers. The oracle records the number of queries and always returns the next cover in
the sequence.

DEFINITION 3.2 (STEGANOGRAPHIC ORACLE). A steganographic oracle U is an infinite sequence of covers
C1,Ca,. .., each cover drawn from the set C'.

The second oracle, called “structure evaluation oracle” can be defined as follows:

DEFINITION 3.3 (STRUCTURE EVALUATION ORACLE). Let (G, E, D) be a stego system and k € {0,1}" be in the
range of G(1™). A structure evaluation oracle Vi is a “black box” that returns, on input m € M and ¢ € C, an object
s € C such that E(c,m,k) = s and D(s,k) = m (in case E is probabilistic, the oracle outputs one possible stego
object s € E(c,m,k)).

Thus, a structure evaluation oracle can be used by the eavesdropper to obtain a stego-object containing an
arbitrary chosen message m, without knowledge of the stego-key in use. By querying the oracle with a fixed message
and some “special” cover like an image consisting of constant color, he might get some hints where the secret message
will be embedded by the stego system.

The attack now proceeds as follows: an eavesdropper can repeatedly query both oracles (i.e. he can “observe”
ordinary communications by using the first oracle and he can construct stego-objects by consulting the second oracle).
There are no further restrictions on the computations done by the eavesdropper, except that the whole procedure
must be polynomial in the security parameter, i.e. the length of the stego key, and in the maximal cover size. After
he has finished his reasoning process, a judge gives him randomly (with probability 1/2) either a plain cover or a
stego-object containing some secret message; both objects are produced by querying the first oracle. He is now faced
to distinguish these two cases. If the eavesdropper has some systematic advantage in distinguishing these two cases
after performing the interactive game (over a truly random decision), the stego system obviously leaks information.
The “advantage” is defined as the probability of a correct guess minus 1/2. A stego system is said to be conditionally
secure, if an eavesdropper can only guess the correct result with a negligibly better probability than random (i.e. his
advantage is negligible, see Definition 3.4).

Formally, the attack model can be described by the following interactive game between the eavesdropper, two
oracles U and Vj, and a judge (we will refer to the following five steps as probabilistic game Z):

e Step 1. The judge runs G(1*') to construct a stego key k of length k' and gives the eavesdropper a structure
evaluation oracle V}, implementing the embedding algorithm E under key k.



e Step 2. The eavesdropper performs polynomial computations. During these computations, he is allowed to

query the oracle Vi, with n; arbitrary messages my,..., my, and covers cy, ..., ¢y, , thereby retrieving the corres-
ponding stego-objects s1, ..., $p,, satisfying E(c;,m;, k) = s; and D(s;, k) = m; for 1 < i < ny. Furthermore,
he queries the oracle U exactly no times to obtain covers ci,...,cp,. All oracle queries can be interwoven

and the input of one query can be dependent on the output of the last oracle queries. The number of oracle
queries n; and ng is not restricted; the only requirement is that the total computation time spent in the game
is polynomial. Note that the input to the oracle V}, does not need to be generated by oracle U.

e Step 3. After the eavesdropper has finished his reasoning process, a judge selects two covers ¢1,co € C by
querying the oracle U twice. Furthermore, he selects a message m and computes s = E(co,m, k). He flips a
coin and issues the eavesdropper either (i) the cover ¢; or (ii) the stego-object s.

e Step 4. The eavesdropper performs a probabilistic test in an attempt to decide whether he was given the stego
object s or the plain cover ¢;; he publishes his guess. The advantage for the eavesdropper is the probability of
a correct guess minus 1/2 (note that he can always make a random decision and succeed with probability 1/2).

e Step 5. The stego system is secure for oracle U, if the advantage for the eavesdropper is negligible.

We adopt the notion of a “negligible sequence” that is used frequently in cryptography:

DEFINITION 3.4 (NEGLIGIBLE SEQUENCE). A sequence n; of non-negative real numbers is negligible, if for all
polynomials p there exists an integer ig such that n; < 1/p(i) for all i > ip.

Now we are able to define steganographic security with respect to a fixed steganographic oracle U. For this
purpose, we consider only steganographic systems with finite sets of covers that are smaller than some constant n,
i.e. we require that all ¢ € C satisty ||c|| < n. A stego-system is called U-secure, if for a randomly selected key k
and for random decisions during the steps of the interactive game, an eavesdropper has no systematic advantage in
winning the game (i.e. the advantage is a negligible sequence with respect to the security parameter k'). Formally:

DEFINITION 3.5 (U-SECURITY). Let S = (G, E, D) be a steganographic system operating on a finite set of covers
C such that Ve € C - ||¢|| < n for a fized constant n. Furthermore, let U be any steganographic oracle, k € {0,1}* be
a stego key in the range of G(lkl) and Vi, be a structure evaluation oracle implementing key k. We call S U-secure,
if the advantage for an eavesdropper in step 5 of the probabilistic game Z is a negligible sequence p(k') with respect
to the length k' of the stego key. The probability is taken over all keys k and all internal coin tosses of game Z; the
game must be polynomial in both n and k'.

A stego system is secure for a set of oracles C, if it is secure for each oracle contained in the set.

DEFINITION 3.6 (CONDITIONAL SECURITY). A stego system S = (G, E, D) is conditionally secure for a set C of
oracles, if for all steganographic oracles U € C, S is U-secure. A stego system is conditionally secure, if it is secure
for all oracles.

The term “conditionally” reflects the fact that such schemes are in generally not secure from an information-
theoretic viewpoint.

Several variations of the definition could be possible. Instead of requiring a stego system to be U-secure for all
oracles U, one might be satisfied in case the system is U-secure for all but finitely many oracles. Alternatively, one
might require that a system is U-secure for infinitely many oracles. In order to get a definition for unconditional
security of steganographic systems, one can remove the requirement that the game must be completed in polynomial
time.

4. PROVABLE SECURITY

Given the definition of steganographic security detailed in the last section, one might be interested in finding an
actual stego system S that satisfies this property. Unfortunately, it might be quite difficult to prove this property
directly. However, one can try to base the security of S on some class of computational problems P that is believed
to be intractable (e.g. on some cryptographic primitives that are believed to be secure). For this purpose, one
constructs a “reduction” from P to the steganographic decision problem for S. Such a reduction can be outlined as
follows. Assume that S is not secure in the sense of Definition 3.6 (for an arbitrary set of oracles), implying that there
exists some probabilistic game Z between an eavesdropper and a judge that allows the eavesdropper to decide the



steganographic decision problem for S with non-negligible probability. One has to show that under this assumption,
instances of P can be solved as well (again with non-negligible probability), contradicting the intractability of P. To
show this, one has to turn the interactive game Z into a randomized (non-interactive) algorithm Z' by replacing all
oracle queries by (possibly randomized) computations; one can memorize this by “Z’ has to answer all oracle queries
itself”.

Although the construction of provably secure schemes remains an open problem, we illustrate this procedure
with a simple example of a stego system in a truly pseudorandom channel. Let n be an RSA modulus (i.e. a
product of two distinct large primes p and ¢); in case more information on the RSA system is required, we refer
to Katzenbeisser.® Assume that all messages that are sent in the communication channel are elements of Z,. We
can describe a steganographic system S = (G, E, D) in the following way: let G' be the key generation of the RSA
public-key cryptosystem. Thus, algorithm G outputs, on input 1" a triple (e,d,n) of integers, where n is an RSA
modulus of size n’ and e and d satisfy

ed = 1 (mod(p—1)(g—1)).

The set of covers consists of all RSA-encrypted strings whose corresponding plaintext ends with a 0 in the binary
expansion, whereas the set of stego-objects contains all strings whose corresponding plaintext ends with a 1. The
embedding algorithm E adds a zero at the end of a secret message m, pads the message with random bits and
encrypts it. The detection process D decrypts a potential stego-object and checks whether the LSB of the plaintext
equals zero. If this is the case, the other bits correspond to the secret message, whereas the message is meaningless
otherwise.

It is obvious that such a system cannot be unconditionally (information-theoretically) secure, as an eavesdropper
can always try to break RSA by brute-force key search and decrypt all messages sent on the channel. However, the
system can be seen as conditionally secure by the following argument. It is well-known that, under the so-called
RSA assumption, computing the least significant bit is a hard-core predicate for the RSA function. In other words,
any algorithm that guesses the least significant bit of a string, given only its RSA encrypted ciphertext, can be used
as an oracle to break RSA. We will construct a reduction from guessing the LSB of an RSA-encrypted plaintext to
the steganographic decision problem for S. As guessing the LSB of an RSA plaintext is computationally equivalent
to breaking RSA as a whole, we would have invented a new way to attack the RSA scheme, which is believed to be
computationally intractable.

Let us assume that the outlined stego-system S is not unconditionally secure, i.e. that there exists a game Z
between an eavesdropper and a judge that allows the attacker to decide whether a given element of Z,, is a cover or
a stego object. We will show that under this assumption there exists a probabilistic algorithm Z’ that guesses the
least significant bit of an RSA encrypted plaintext better than random, thereby contradicting the RSA hypothesis.

Let & € Z,, be any ciphertext and y = z%mod n be the corresponding plaintext; we describe an algorithm Z’ that
decides whether the least significant bit of y equals one. Algorithm Z' simulates the game Z, but has to answer
all oracle queries by the eavesdropper itself. If the eavesdropper asks for a cover ¢;, Z' selects a string y; with
least significant bit zero randomly, encrypts it and returns the resulting string as oracle result. Conversely, if the
eavesdropper asks for a cover that has a message m; embedded, Z' appends a 1 as least significant bit, pads the
message with random bits, encrypts the result and assumes the resulting string to be the oracle output. In step 4,
7' always returns z as result of the oracle. By assumption, the eavesdropper can now decide whether x has least
significant bit zero or one with non-negligible probability; thus, also Z', who simulates the game, can make this
decision. Thus, we have constructed a probabilistic algorithm Z' which decides the least significant bit of y, which
in turn can be extended to an algorithm that breaks RSA itself, thereby violating the RSA hypothesis.

Note that the actual structure of the game Z is unknown; we just know that such a game Z exists and that it
can be simulated by a probabilistic algorithm that has access to two oracles. When answering the oracle queries we
have to be careful so that the simulated oracle answers remains correct, i.e. are a possible oracle output for the set
of steganographic oracles (or structure evaluation oracles) we are working with.

It is possible to extend the scheme to a more practical one. Assume now that we have access to an embedding
function E’ that embeds a binary string m into a digital image o by modifying the least significant bits of o in such
a way that the distribution of the least significant bits remains unchanged. Then we can construct a stego scheme in
the following way: the key generation process remains unchanged. Covers for secret transmissions are images that
are modified in the following way: choose any string z, append a zero, encrypt the result with RSA and embed the



resulting string in the image using the operation E’. The stego embedding rule takes the secret message m, appends
a 1, pads the string with random bits, encrypts the result and embeds the encrypted message in the image.

Thus, the main idea for the scheme is that one party always embeds some string in the cover; in case of a
steganographic communication, this string resembles the secret message, otherwise it is just random. By using a
similar reduction as outlined previously, the security of the scheme can be established. Instead of returning an
encrypted string as oracle result, the string is embedded in some given image using E’. Again, if the eavesdropper
is able to distinguish covers from stego objects, he is able to guess the LSB of an RSA-encrypted ciphertext.

The previous system makes another possible weakness of all definitions for steganographic security apparent. We
modified every message sent in the communication channel steganographically and used cryptography to conceal
this action. Any eavesdropper is faced to decide the steganographic decision problem soley with the knowledge of
the covers used within this communication channel. Especially, in our model he is not allowed to use any “external
information”, like some “normal” images found outside the communication channel. Although this seems to be
unrealistic, it is a problem present in all previous security definitions.

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new definition for steganographic security. Instead of relying on information-theoretic
approaches, we use an indistinguishability test to establish security. Knowledge of a “true” probability distribution
for covers is substituted by an oracle mechanism that might be easier to handle when giving proofs of security.
However, the constuction of practical provably secure steganographic schemes remains an open problem. Besides
this issue, future work includes the investigation of steganalysis methods that conform to Definition 3.6 (one possible
research direction would be applying Bayesian learning techniques). Furthermore, the implications of choosing special
classes of steganographic oracles on the decision strategy has to be adressed.
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