StirMark Benchmark manual

	Authors
	Fabien A. P. Petitcolas, Microsoft Research
Nazim Fatès

	Contact address
	fabienpe@microsoft.com

	Scope
	See StirMark Benchmark license

	Created
	2000-09-11 23:22

	Last Updated
	2002-03-21 18:40

1 Abstract

The purpose of this document is to give some guidelines to get started with evaluation engine of StirMark Benchmark. However, it does not claim to be comprehensive and the user may sometimes have to look at the source code.

If you only intend to use StirMark Benchmark as provided you need only read section 2 ‘Program parameters and configuration’.

If you intend to modify the code and add new tests and attacks, you should also read the other sections.

2 Program parameters and configuration
Additional background concerning the whole StirMark Benchmark 4 project can be found in the following publications:

· Fabien A. P. Petitcolas. Watermarking schemes evaluation. I.E.E.E. Signal Processing, vol. 17, no. 5, pp. 58–64, September 2000. [http://www.cl.cam.ac.uk/~fapp2/publications/ieeespm00-evaluation.doc]

· Fabien A. P. Petitcolas et al. A public automated web-based evaluation service for watermarking schemes: StirMark Benchmark. In Ping Wah Wong & Edward J. Delp, editors, proceedings of Electronic Imaging 2001, Security and Watermarking of Multimedia Contents, vol. 4314, San Jose, CA, U.S.A., 22–26 January 2001. The Society for imaging science and technology (I.S. & T.) & the international Society for optical engineering (S.P.I.E.). ISSN 0277-786X. [http://www.cl.cam.ac.uk/~fapp2/publications/ei01-automated.doc]

To be able to test your watermarking scheme with StirMark Benchmark, you will first have to implement a compatible library (Windows DLL or Linux dynamic library). The header for the library is defined is StirmarkBenchmark.h and a sample library is provided with the source code.

2.1 Usage

The program takes 3 parameters as command options: the path for the watermarking library file, the evaluation profile (INI file) and the LOG file. It also assumes that certain folders have been created. These folders are described in section 2.2.
· The library file contains the marking scheme functions: Embed / Extract / GetSchemeInfo

· The INI file contains the parameters to run the tests (which images and which tests with which parameters). One can use a different evaluation profile for different watermarking applications. The profile provided by default corresponds more or less to the profiles implemented in StirMark 3.1.79.
· The LOG file is used to export the results (table whose columns are separated by a tabulation character. In C notation: ‘\t’). It will be completed by a SQL database in future releases. Communication with the database will be done via the CSMBDatabase class.

Example of use: StirMarkBench myDLL.dll myINIFile.ini myLOGfile.log
Default settings are EmbedDLL.dll, SMBsettings.ini and SMBReport.log.

2.2 Directories structures and media database

	/
	Bin/
	
	Benchmark/
	
	the benchmarking tool itself

	
	
	
	Libraries/
	
	libraries sent by users

	
	Profiles/
	
	
	
	profiles are text configuration files describing the test to be applied (one profile per application and per 'robustness' level)

	
	Media/
	Input/
	Images/
	MyFolder1/
	samples sorted according to some criteria

	
	
	
	
	MyFolder2/
	

	
	
	
	
	…
	

	
	
	
	Sounds/
	MyFolder1/
	

	
	
	
	
	MyFolder2/
	

	
	
	
	
	…
	

	
	
	Output/
	
	
	Same substructure is created for input.

2.3 Evaluation profile (initialisation file)
The sets of tests and media depend on the purpose of the watermarking scheme and are de-fined in evaluation profiles.
Evaluation profiles have been implemented as INI files which have the same structure as Windows INI files. You can use a semi-column to comment a line. Right now there is only one evaluation profile available: it just includes all the tests with many parameters but you can write your own easily.
2.3.1 Media folders

In the initialisation file, under the section [ImageFolders] you can write the names of the folders you want to use under the key Foldern where n is the number of folders. These folders are assumed to be sub-folders of Media/Input. For instance:

[ImageFolders]

Folder1=Images/MyFolder1

Folder2=Images/MyFolder2

With this information the program knows that it has to perform the tests on all the images contained in folder Media/Input/MyFolder1 and Media/Input/MyFolder2 and save the transformed images in Media/Output/MyFolder1 and Media/Output/MyFolder2 respectively.
2.3.2 List of tests

The list of tests is defined in under the section [Tests]:

[Tests]

Test1=Test_ConvFilter

Test2=Test_Rescale

Test3=Test_Correlation

Test4=Test_JPEG

Each test will find how to initialise itself under the section, which has the same name, e.g.:

[Test_PSNR]

; Watermarking strengths tested

start=10

end=30

step=10

[Test_Rotation]

; Rotation angle (degrees)
list=-2 -1 1 2

By default the parameters are start, end, step and list. Be careful, these are case sensitive. Some tests do use different keywords. For each test the meaning of the parameter is detailed in the INI file.
These are initialised in the virtual CSMBTest::InitTest() method. If your test needs more parameters you can override this method and add other parameters, e.g.:
[Test_NewAttack]

; the block fusion attack

start=2
end=2
step=1
NGroupsAtTheEnd=2
3 Class diagram

The following diagram shows the relationships between classes. The main class is CSMBBench. It is created with the main program parameters and is in charge of running a full benchmark on a given scheme (library file) using a given evaluation profile (.ini file). It uses CSMBImageList and CSMBTestList to deal with the list of tests and images. When initialisation is completed it just runs a loop through all test and images, applying each test to each image.

CSMBTest – This class takes an image (or a list of images) and a marking scheme as an input and performs a test on it. The test can be whatever we need. Typical tests are false-alarm tests (use of importance sampling?) and robustness tests (embedding, transformation, extraction). They fall in (currently) three arbitrary categories which share significant amount of code:

· Signal processing: these test typically apply transformation to the image but to not change its size (no resampling required);

· Geometric transformations: these require the use of resampling algorithm as they change the size of the picture;

· Special transforms: they basically include any other test not falling in the previous categories.

CSMBMarkingScheme – This is the base class for marking schemes. It acts as an interface between the MarkBench object model and the libraries provided by the users. Subclasses depend on the medium used.

CSMBImageTransform – This class performs a transformation on a medium. This includes filtering, geometric transformation and any other distortion required for testing.

[image: image1.wmf]Bench

Test

MarkingScheme

Test_ST

Image

Test_SP

Image_Processing

SP_AddNoise

SP_ConvFilter

Test_GT

1..n

1

1

1

Reconstructor

RecNearestNeig

hbour

RecInterpolating

Quadratic

Transformation

GT_Affine

GT_Rotation

Resampler

SamPoint

1

1..n

1

1..n

Test_AddNoise

LEGEND

Composition

Aggregation

inheritance

Composition/Inheritance

 to the Image class

Foo_Class

abstract class

4 Tests

The CSMBTest class can be seen as an interface object to unify the use of the library and the output of the results, but its core the Run(…) function is empty and has too be defined.

Generally, a test will include a part in it where there is a modification of an image such as embedding/ extracting or attacking.

4.1 Embedding and extracting

For embedding and extracting, the user can take advantage of the fact that each CSMBTest object is linked to a CSMBMarkingScheme object. So for the embedding process typical use will be:

m_pMarkingScheme->SetKey(SMB_DEFAULT_MARKING_KEY,
 SMB_DEFAULT_MARKING_KEY_LENGTH);

m_pMarkingScheme->SetMsg(pMsg, uiMsgLength);

m_pMarkingScheme->SetStrength(SMB_DEFAULT_MARKING_STRENGTH);

m_pMarkingScheme->EmbedImg(imgOriginal, imgMarked);

4.2 Attacking

If a test includes an attack then it needs to use a specific object to perform the attack, an image transformation. Such object has a main function that takes a source image as input and a target image as output. With the conventions of the project, this image has to be initialised by the caller of this object, i.e. the test. So the object might also need to be able to provide the size of the new image. Finally, this object has to include classical Get/Set functions to tune the parameters.

As mentioned above, we have classified transforms into 3 categories: signal processing, geometric transforms, special transforms. The signal processing attacks can be easily written by deriving classes from the CSMBImageProcessing base class. For example, for adding noise to an image you will create an object CSMBSP_AddNoise derived from CSMBImageProcessing that will be defined as follows:

#include "../SignalProcessing/SMBImageProcessing.h"

class CSMBSP_AddNoise : public CSMBImageProcessing

{

public:

 CSMBSP_AddNoise();

 virtual ~CSMBSP_AddNoise();

 // main function of the attack defined in the .cpp file

 Gray GetNewPixelValue(long in_x, long in_y, int in_channel);

 // the set parameter function is normalised from 0 to 100

 // 0 gives identity and 100 a completely random image

 void SetNoiseLevel(double in_Level);

private:

 double m_NoiseLevel;

};

After having created this object CSMBSP_AddNoise, you will have to create the object CSMBTest_AddNoise that uses this transform object to perform a robustness test.

class CSMBTest_AddNoise : public CSMBTestSP

{

public:

CSMBTest_AddNoise(TCString &in_cstrIniPath, TCString &in_cstrLogPath);

virtual ~CSMBTest_AddNoise();

protected:

 virtual CSMBTest* Clone() const { return new CSMBTest_AddNoise(*this); };

 CSMBTest_AddNoise();

private:

 virtual void Setup();

 virtual void DoTransform(const CSMBImage &in_imgSource,

 CSMBImage &out_imgAttacked,

 double in_par);

 CSMBTest_AddNoise(const CSMBTest_AddNoise &in_tstAddNoise);

 CSMBSP_AddNoise m_Noise;

};

Ideally, each attack should have at least its corresponding test. So the number of test should be greater that the number of attacks as some tests do not use an attack (false positive tests, embedding time, distortion…) and some tests use the combination of attacks.

4.3 Main execution steps

Pseudo code:

CSMBBench::CSMBBench(strLibPath, strIniPath, strLogPath);

CSMBBench::operator() {

 CSMBMarkingScheme::CSMBMarkingScheme(strLibPath);

 CSMBImageList::Initialise(strIniPath);

 CSMBTestList::Initialise(strIniPath, strLogPath);

 CSMBBench::Intro();

 for all elements in CSMBImageList {

 // assuming current image is imgSource

 for all elements in CSMBTestList {

 // assuming current test is an instance of CSMBTest_Foo

 CSMBTest_Foo::Run(imgSource, mksMyScheme) {

 CSMBTest_Foo::InitTest(imgSource);

 for (double r = m_rStart; r <= m_rEnd; r += m_rStep) {

 SetParameter(r);

 DoTransform(imgSource, imgTransformed); // Calls GetpTransformer()

 ImgTransformed.Save(…);

 }

 }

 }

 }

 CSMBBench::Outro(tstlstMyTestList);

}

5 Adding a new test

Before you add a test you may want to look at existing ones:

· CSMBTest_PSNR: watermarks images with different strengths and measure the PSNR after marking;

· CSMBTest_JPEG: watermark images with default strength, plies JPEG compression with different quality factors and records the output of the watermark detector.

· CSMBTest_Affine: use an affine transformation as attack and record the output of the watermark detector.

Let’s assume your test name is Test_Foo.

You should create an object CSMBTest_Foo derived from CSMBTest or from other classes derived from CSMBTest, such as CSMBTestSP or CSMBTestGT. Note that the CSMBTest class provides a clone function, which relies on the copy constructor. You should ensure that your class provides a proper copy constructor or that the default copy constructor created by the compiler is enough.

class CSMBTest_Foo : public CSMBTestGT

{

public:

 CSMBTest_Foo(TCString &instrIniPath, TCString &in_strLogPath);

 virtual ~CSMBTest_Foo();

protected:

 virtual CSMBTest* Clone() const;

 CSMBTest_Foo();

 // Some tests do depend on the source image…

 Void InitTest(const CSMBImage &in_imgSource);

private:

 // The DoTransform function is already provided

 // in CSMBTestGT

 // The Setup method does all the initialisation

 // and in particular it sets the name of the test

 virtual void Setup();

 // It is assumed (at the moment) that all tests can

 // be driven using one parameter which can be set by the

 // caller.

 void SetParameter(double in_dParam);

 // Object used to transform an image

 CSMBGT_Foo m_tra;

 const CSMBTransformer *GetpTransformer() const { return &m_tra; }

};

Now go to the Tests/SMBTestList.cpp file, include the header of your test (e.g., #include "../Tests/SMBTest_Foo.h") and change the void CSMBTestList::Initialise(TCString &in_cstrIniFilePath, TCString &in_cstrLogPath) function by adding the following lines:

else if (strTestName == "Test_Foo")

 push_back(new CSMBTest_Foo(in_cstrIniFilePath, in_cstrLogPath));

The last step is to go to the initialisation file (SMBSettings.ini) and add the name of your test (the string given for strTestName) and the corresponding section:

[Tests]

Test1=Test_ConvFilter

Test2=Test_Rescale

Test3=Test_Correlation

Test4=Test_JPEG

Test5=Test_Foo

[Test_Foo]

; Par: strength tested

start=10

end=30

step=10

6 Coding conventions

In order to maximize code readability, maintain readability when different people work on the same code and make our code consistent, we have tried to use the following guidelines for our code.
6.1 Naming conventions

Naming conventions serve three primary purposes:

· One hopes that some annoying aspects of programming will be relieved if hard-and-fast rules are forced upon programmers. If you know the convention well, many variable naming decisions will be made almost instinctively, leaving time to focus on important things.
· A universal naming convention improves readability of code, especially by persons other than the original author (other developers or users of our code). This can make code smoother to read and also reduces the work of keeping comments in sync with code.

· A good naming convention can help ensure correctness of code when one using a language which is not strongly typed (such as C++). The ‘Hungarian’ conventions are oriented around type checking. Correct code must adhere to strict type checks and mismatched types, which typically indicate bugs, are easy for a human looking at the code to spot.

Hungarian variable names are composed of two main parts: the tag and the qualifier. A tag is required in every variable name, while the qualifier is optional. The tag in a variable name is always all in lower case. The qualifier, if there is one, is delimited from the tag by its first letter being capitalized. For example, in the line...

for (pch = pchFirst; pch <= pchLast; pch++)

... in the variable name pchFirst, pch is the tag (identifying a pointer to a character) and First is the qualifier.

The tag may be exactly a base tag, or it may be constructed by tacking one or more prefixes onto a base tag. In our pchFirst example, ch is the base tag (identifying a character) and p is a prefix (identifying a pointer to the following tag). One can use multiple prefixes; for example, a pointer to a pointer to a character should be called ppch. There’s sort of an implied right to left order of operations, so ppch evaluates as p(p(ch)). Prefixes are not set off from the base type by capitalization or any other syntactic indicator; one has to recognize prefixes to deconstruct a complex tag.

The use of Hungarian variable names makes it very easy to spot errors where two variable of different type are used in the same expression, just by comparing the tags in the variable names.

In general the Hungarian notation names variables to identify the class or usage of the variable. There is no such thing as a standard Hungarian notation. It's not about imposing strict mandatory rules but rather about providing a quick and consistent notation system we can follow across this project.

You can find more information about this notation at:

· http://home.jtan.com/~gregleg/hungarian.html
· http://www.jstatsoft.org/v02/i09/mcsim/doc/Programming-notes.txt
· http://msdn.microsoft.com/library/techart/hunganotat.htm
6.1.1 Base tags

ch
on byte unsigned character code (e.g., char chKey = 'a';)

str
string – a character string object character string (e.g., CSMBString strFileName("test");)

sz
zero-terminated string – a C-style string (e.g., char sz1[100];)

wch, wstr and wsz are used for Unicode characters.

l
a long (signed 32 bit value).

u
an unsigned long (32 bit unsigned value).

r
a real number (float).

dp
a double precision (double) number.

n
an integer value.
6.1.2 Prefixes

p
pointer – a psz is a pointer to a sz. A pfn is a pointer to a function.

rg
an array (“range”). For example rgch for an array of characters.

i
An index into an array of the base type. For instance ich may be an index into an array of characters.

c
A count of items.

m_
member – The variable with such a prefix is a C++ class member variable. An m_foo is just a foo, but it’s a member of some class.

s_
static member – This is the same as m_ but identifies a static member of a C++ class.

in_
input function parameter

out_
output function parameter

inout_
input an output function parameter

6.1.3 Class tags

We have used other naming conventions throughout the program:

· The names of the classes begin with the tag CSMB which stands for Class of StirMark Benchmark (e.g., CSMBImage)
· The transformations (or attacks) are sorted in by categories and have their own tag:

	Transformation category
	Feature
	Tag
	Example

	Signal Processing
	Size and number of channels are conserved. No resampler or reconstructor is used.
	CSMBSP_
	CSMBSP_MedianCut

	Geometric Transforms
	Use a resampler and a reconstructor. Size can be modified
	CSMBGT_
	CSMBGT_Affine

	Special Transforms
	Modify the size without the use of a resampler and reconstructor.
	CSMBST_
	CSMBST_RemoveLines

· The tests have the tag CMBTest_.

6.2 Typographic conventions

Please use space rather than tabulations as different editors have different tab setting and this may mess up the alignment of your code.

Two spaces have been used for indentation.

Two compilation keywords are currently used: WIN32 and UNIX but other may be added in the future. So the following usage:

#ifdef WIN32
<Code for Windows>
#endif // WIN32
#ifdef UNIX
<Code for Unix like platforms>
#endif // UNIX
is more adapted than this one:

#ifdef WIN32
<Code for Windows>
#else
<Code for Unix like platforms>
#endif // WIN32
6.3 Files structure

Having dedicated testing code for each class is a plus (
6.3.1 Header files (e.g., SMBImage.h)

<File information and copyright notice>

#if !defined(_<CAPITALISED FILE NAME>_H_)

#define _<CAPITALISED FILE NAME>_H_

#if _MSC_VER > 1000

#pragma once

#endif // _MSC_VER > 1000

// STL headers

<includes from standard template library>

#if _MSC_VER > 1020 // if later than VC++ 4.2

using namespace std; // the std C++ libs are in namespace std

#endif

// Other standard headers

<Other standard headers>

// SMB headers

<Headers from other SMB files>

// Other definitions

<Other definitions>

<Core of the .h files>

//

#ifdef SMB_CODE_TESTING

int <Class name>_Test();

#endif // SMB_CODE_TESTING

#endif // !defined(_<CAPITALISED FILE NAME>_H_)

6.3.2 Implementation files (e.g., SMBImage.cpp)

<File information and copyright notice>

// STL headers

<includes from standard template library not already included
>

#if _MSC_VER > 1020 // if later than VC++ 4.2

using namespace std; // the std C++ libs are in namespace std

#endif

// Other standard headers

<Other standard headers not already included>
// SMB headers

#include "<Path and filename>.h"
<Headers from other SMB files not already included>
// Other definitions

<Other definitions not already included>

<Core of the .cpp file>

//

#ifdef SMB_CODE_TESTING

// Definition needed by the testing function

int <Class name>_Test()

{

 <Code of the testing function>

 return 0;

}

#endif // SMB_CODE_TESTING

6.4 Other formatting conventions

6.4.1 Braces

Use function level curly braces on their own line and don’t indent them:

void Foo(void)

{

}

Indent the first level of code within a function:

void Foo(void)

{

 Bar();

}

For other braces: use open curly braces at the end of line (space before) or on their own line and use closing curly braces on their own line and align them with the outside code:

if (fFoo) {

 Bar1();

}

else {

 Bar2();

}

typedef struct FOO_TAG

{

 FOOK fook;

 union {

 char *sz;

 WCHAR *wz;

 };

 BAR bar;

} FOO;

Or

if (fFoo)
{

 Bar1();

}

else

{

 Bar2();

}

typedef struct FOO_TAG

{

 FOOK fook;

Union
{

 char *sz;

 WCHAR *wz;

 };

BAR bar;

} FOO;

6.4.2 Indenting

Indent using 2 spaces.

Don’t indent case or default in switch statements:

switch (foo)

{

case 1:

 Bar();

 break;

default:

 Baz();

 break;

}

Don’t indent labels:

FOO Bar(void)

{

 if (vfoo1 != vfoo2)

 goto LDone;

 vfoo1 = vfoo2;

LDone:

 return vfoo1;

}

6.4.3 White spaces
Never end a line with a space or tab.

Have a blank line between variable declarations and code.

BOOL Foo(void)

{

 BAR bar1, bar2;

 int cBar; // There is a blank line below.

 cBar = Bar(&bar1, &bar2);

 return cBar == 0;

}

Spaces are always avoided in the following places:

· Between the function name and the left parenthesis (e.g., “Foo(”);
· Inside parentheses with one argument (e.g., “(void)”);
· Between the left parenthesis and the first argument (e.g., “(a, b)”);
· Between a variable and a comma (e.g., “(a, b)”);
· Between a variable and the right parenthesis (e.g., “(a, b)”);
· Between a variable and a semicolon (e.g., “int a, b;”);
· Between a pointer and the variable it modifies (e.g., “FOO *pfoo”);
· Next to arrows (e.g., “a->b”;);
· Next to variable/dot combinations (e.g., “a.b”);
Spaces are always used in the following places:

· Around keywords (e.g., “if (...)” and never “if(...)”);
· Between argument/variable combinations in parentheses (e.g., “(a, b, c)”);
· Between a type and a pointer (e.g., “FOO *pfoo”);
· Surrounding equals signs (e.g., “a = b;” and never “a=b;”);
In summary, spaces are placed as in English (e.g., space after comma, no space after parentheses, space after keywords, space before and after most operators).

Spaces can be used to indicate the precedence of the various operators in an expression, where spacing indicates lower precedence (e.g., “a*b + c”. In general however, have spaces on both sides of operators.

Avoid unnecessary parentheses in expressions. In an expression like “((ffoo | fbar) == grf)” the parentheses are required based on operator precedence. However in an expression like “if (a&&b || c&&d)” no extra parentheses are needed. It’s allowed to include technically unneeded parentheses if it makes the expression clearer to read (e.g., the above could be “if ((a && b) || (c && d))”).

6.4.4 Line breaks

Avoid having line longer than 80 character.

Never have multiple statements on one line:

a = 1; b = 2; // bogus

if (fFoo) Bar(); // bogus

Labels are always on lines by themselves:

LFoo: a = 1; // bogus

Empty statements after a loop or conditional go on a separate line.

for (pch = pchStart; *pch != ‘\0’; pch++)

 ; // This is on a separate line.

if (fBar)

 ; // This is on a separate line.

else {

 ...

}

Always use braces with conditionals spanning more than one line.

if (cbFoo == 0 || cbFoo >= cbFooMax ||

 (pFoo = PAllocateCb(cbFoo)) == NULL) {

 return;

}

Break long expressions between logical operators.

if (cFoo > 1 && cBar < 10 ||

 fFoo && fBar) {

 ...

}

6.4.5 Messages and error messages

Always use a dot at the end of messages.

6.5 Usage

6.5.1 Functions

Always declare the return type of a function. You should use (void) at the end of a function declaration if there are no arguments instead of empty parentheses: “()”
BOOL Foo(int cBar);

void Bar(void);

Always define the types and names of function arguments:

BOOL Bar(CSMBImage *in_pimgOriginal, TCString strMessage);

Never have multiple local variable declarations on one line:

int cFoo = 0; long lSwap; // bogus

6.5.2 Inline comments

Indent comments along with code:

// This comment is aligned with the ‘if’ statement.

if (fFoo) {

 // This comment inside the ‘if’ is indented.

 fBar = TRUE;

}

// This comment is back to original indenting.

Comment Boolean constants in function calls with the parameter name. In other words write Foo(img, TRUE /* fShow */, FALSE /* fUndo */); when Foo is defined as: void Foo(CSMBImage in_imgSource, BOOL fShow, BOOL fUndo);
Use “Fall through” comments in switch statements. Switch cases that do something and then fall through to the next case must be explicitly marked with a “// Fall through” comment:

switch (foo) {

case 1:

 bar++;

 // Fall through

case 2:

case 3:

 baz = 0;

 break;

case 4:

 ...

}

Put comments after long or nested #ifdef lines:

#if !define(FUTURE)

...

#endif // !define(FUTURE)

6.5.3 File comments

Every file needs a header comment.

File comments should list filename, developer contact and copyright (bold characters should be replaced by the relevant information).
//

// StirMark Benchmark – <Name of the file>
//

// Contents: <Description of the content>
//

// Purpose: <Purpose of this part of the code>
//

// Created: <Name of creator>, <Affiliation>, <Creation date>
//

// Modified: <Name>, <Affiliation>, <Creation date>
//

// History: <Important modifications since previous version>
//

// $Copyright$
//

// $Header: $

//

6.5.4 Function comments

Every function needs a header comment.

//

// <Function name>

// <Contact name>

//
// <Purpose of the function>

Have two blank lines between successive functions.

6.5.5 Review comments

Use “// TODO: comment” to mark incomplete code and “// BUG: comment” to mark wrong code. Adding your name to the comment makes it easier for other to see who added it. Adding the name of the person to whom the comment is intended is a plus. So one could use “// TODO fabien(frédéric): this code leaks memory during failure” meaning that Frédéric wrote the comment and Fabien is supposed to fix the problem.

6.5.6 Others

Expression order should indicate most significant or complex elements first: if (pfoo->pbar == NULL) is better than if (NULL == pfoo->pbar). Note some prefer the reverse way because it can catch common programming errors like if (NULL = pfoo->pbar) at compile time, but compilers will usually issue a warning.
7 Conclusion

The StirMark Benchmark program has the following features:

· It uses a dynamic library provided by the user for the marking scheme functions.

· It performs the tests on all the files located in the folders specified in the INI file.

· Each test is customisable and its parameters are set in the INI file.

· It exports the numerical results in a LOG file (soon to a SQL database) and the transformed images in an output folder.

· Tests and attacks are easy to write and implement as they derive from base classes.

� Please include the absolute minimum of files into header files. All the other necessary includes should appear in the corresponding implementation file.

_1078240349.unknown

_1032876994.vsd

